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Abstract

Classifiers used in the wild, in particular for safety-
critical systems, should know when they don’t know,
in particular make low confidence predictions far away
from the training data. We show that ReLU type neu-
ral networks fail in this regard as they produce almost
always high confidence predictions far away from the
training data. For bounded domains we propose a
new robust optimization technique similar to adversar-
ial training which enforces low confidence predictions
far away from the training data. We show that this
technique is surprisingly effective in reducing the con-
fidence of predictions far away from the training data
while maintaining high confidence predictions and test
error on the original classification task compared to
standard training. This is a short version of the corre-
sponding CVPR paper.

1. Introduction

Despite the great success story of neural networks
there are also aspects of neural networks which are un-
desirable. A property naturally expected from any clas-
sifier is that it should know when it does not know or
said more directly: far away from the training data a
classifier should not make high confidence predictions.
This is particularly important in safety-critical appli-
cations like autonomous driving or medical diagnosis
systems where such an input should trigger human in-
tervention or other measures ensuring safety.

Many cases of high confidence predictions by neural
networks far away from the training data have been
reported, e.g. on fooling [28] or out-of-distribution im-
ages [14] or in a medical diagnosis task [20]. More-
over, it has been observed that, even on the original
task, neural networks often produce overconfident pre-
dictions [11].

A related but different problem are adversarial sam-
ples [31, 10, 25]. Apart from methods which pro-
vide robustness guarantees for small neural networks

[13, 33, 29, 23], up to our knowledge the only approach
which has not been broken again [5, 4, 2] is adversarial
training [22].

While several methods have been proposed to ad-
just overconfident predictions on the true input distri-
bution using softmax calibration [11], ensemble tech-
niques [18] or uncertainty estimation using dropout [9],
only recently the detection of out-of-distribution in-
puts [14] has been tackled. The existing approaches
basically either use adjustment techniques of the soft-
max outputs [8, 21] by temperature rescaling [11] or
they use a generative model like a VAE or GAN to
model boundary inputs of the true distribution [19, 32]
in order to discriminate in-distribution from out-of-
distribution inputs directly in the training process.
While all these approaches are significant steps towards
obtaining more reliable classifiers, those using a gener-
ative model have been recently challenged by [26, 15]
which report that generative approaches can produce
highly confident density estimates for inputs outside of
the class they are supposed to model. Moreover, the
quite useful models for confidence calibration on the
input distribution like [9, 11, 18] cannot be used for
out-of-distribution detection [20].

We show that the class of ReLU networks produces
arbitrarily high confidence predictions far away from
the training data. Moreover, we propose a robust opti-
mization scheme motivated by adversarial training [22]
which simply enforces uniform confidence predictions
on noise images which are by construction far away
from the true images. Our technique not only signif-
icantly reduces confidence on such noise images, but
also on other unrelated image classification tasks and
in some cases even for adversarial samples.

2. ReLU networks produce piecewise

affine functions

We quickly review the fact that ReLU networks
lead to continuous piecewise affine classifiers, see [1, 7],
which we briefly summarize in order to set the ground
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for our main theoretical result in Section 3.

Definition 2.1. A function f : R
d → R is called

piecewise affine if there exists a finite set of polytopes
{Qr}M

r=1 (referred to as linear regions of f) such that
∪M

r=1Qr = R
d and f is an affine function when re-

stricted to every Qr.

Feedforward neural networks which use piecewise
affine activation functions (e.g. ReLU, leaky ReLU)
and are linear in the output layer can be rewritten as
continuous piecewise affine functions [1]. This includes
fully connected, convolutional, pooling, and residual
layers and even skip connections as all these layers
are just linear mappings. Moreover, it includes fur-
ther average pooling and max pooling. More precisely,
the classifier is a function f : R

d → R
K , where K

are the number of classes, such that each component
fi : Rd → R, is a continuous piecewise affine function
and the K components (fi)

K
i=1 have the same set of

linear regions. Note that explicit upper bounds on the
number of linear regions have been given [24]. We refer
to the appendix for an explicit derivation of the affine
output f (L+1) of the ReLU network

f (L+1)(z)
∣

∣

∣

Q(x)
= V (L+1)z + a(L+1),

on the linear region Q(x).

3. Why ReLU networks produce high

confidence predictions far away from

the training data

With the explicit description of the piecewise lin-
ear classifier resulting from a ReLU type network from
Section 2, we can now formulate our main theorem.
It shows that, as long a very mild condition on the
network holds, for any ǫ > 0 one can always find for
(almost) all directions an input z far away from the
training data which realizes a confidence of 1 − ǫ on z

for a certain class.
All the proofs can be found in the appendix.

Theorem 3.1. Let Rd = ∪R
l=1Ql and f(x) = V lx + al

be the piecewise affine representation of the output of a
ReLU network on Ql. Suppose that V l does not contain
identical rows for all l = 1, . . . , R, then for almost any
x ∈ R

d and ǫ > 0 there exists an α > 0 and a class
k ∈ {1, . . . , K} such that for z = αx it holds

efk(z)

∑K
r=1 efr(z)

≥ 1 − ǫ.

Moreover, lim
α→∞

efk(αx)
∑K

r=1
efr(αx)

= 1.

Please note that the condition that for a region the
linear part V l need not contain two identical rows is
very weak. It is hardly imaginable that this is ever
true for a normally trained network unless the output
of the network is constant anyway. Even if it is true,
it just invalidates the assertion of the theorem for the
points lying in this region. Without explicitly enforcing
this condition it seems impossible that this is true for
all possible asymptotic regions extending to infinity.

The result implies that for ReLU networks there
exist infinitely many inputs which realize arbitrarily
high confidence predictions of the network. It is easy
to see that temperature rescaling [21] of the softmax,

efk(x)/T
∑K

l=1
efl(x)/T

, will not be able to detect these cases.

Also a reject option in the classifier, see e.g. [3], will not
help to detect these instances either. Without modify-
ing the architecture of a ReLU network it is impossible
to prevent this phenomenon. Note that arbitrarily high
confidence predictions for ReLU networks can be ob-
tained only if the domain is unbounded, e.g. R

d. How-
ever, images are contained in [0, 1]d and thus Theorem
3.1 does not directly apply, even though the technique
can in principle be used to produce high-confidence pre-
dictions (see Table 2, where we show how much one has
to upscale to achieve 99.9% confidence). In the next
section we propose a novel training scheme enforcing
low confidence predictions on inputs far away from the
training data.

4. Adversarial Confidence Enhanced

Training

Theorem 3.1 tells us that for ReLU networks a post-
processing of the softmax scores is not sufficient to
avoid high-confidence predictions far away from the
training data - instead there seem to be two potential
ways to tackle the problem: a) one uses an extra gen-
erative model either for the in-distribution or for the
out-distribution or b) one modifies directly the network
via an adaptation of the training process so that uni-
form confidence predictions are enforced far away from
the training data. As recently problems with genera-
tive models have been pointed out which assign high
confidence to samples from the out-distribution [26] we
explore approach b).

We assume that it is possible to characterize a dis-
tribution pout on the input space for which we are sure
that it does not belong to the true distribution pin

resp. the set of the intersection of their supports has
small probability mass. An example of such an out-
distribution pout would be the uniform distribution on
[0, 1]w×h (w ×h gray scale images) or similar noise dis-
tributions. Suppose that the in-distribution consists of

2 59



certain image classes like handwritten digits, then the
probability mass of all images of handwritten digits un-
der the pout is close to zero.

In such a setting the training objective can be writ-
ten as a sum of two losses:

1

N

N
∑

i=1

LCE(yi, f(xi)) + λE
[

Lpout
(f, Z)

]

, (1)

where (xi, yi)
N
i=1 is the i.i.d. training data, Z has dis-

tribution pout and

Lpout
(f, z) = max

l=1,...,K
log

( efl(z)

∑K
k=1 efk(z)

)

. (2)

LCE is the usual cross entropy loss on the original clas-
sification task and Lpout(f, z) is the maximal log con-
fidence over all classes, where the confidence of class l

is given by efl(z)
∑K

k=1
efk(z)

, with the softmax function as

the link function. The full loss can be easily minimized
by using SGD with batchsize B for the original data
and adding ⌈λB⌉ samples from pout on which one en-
forces a uniform distribution over the labels. We call
this process in the following confidence enhancing data
augmentation (CEDA). In a concurrent paper [15] a
similar scheme has been proposed, where they use as
pout existing large image datasets, whereas we favor an
agnostic approach where pout models a certain “noise”
distribution on images.

The problem with CEDA is that it might take too
many samples to enforce low confidence on the whole
out-distribution. Moreover, it has been shown in the
area of adversarial manipulation that data augmenta-
tion is not sufficient for robust models and we will see
in Section F that indeed CEDA models still produce
high confidence predictions in a neighborhood of noise
images. Thus we are enforcing low confidence not only
at the point itself but actively minimize the worst case
in a neighborhood of the point similar to adversarial
training we call his adversarial noise. This leads to the
following formulation of adversarial confidence enhanc-
ing training (ACET)

1

N

N
∑

i=1

LCE(yi, f(xi)) + λE
[

max
‖u−Z‖p≤ǫ

Lpout(f, u)
]

,

(3)

where in each SGD step one solves (approximately) for
a given z ∼ pout the optimization problem:

max
‖u−z‖p≤ǫ

Lpout(f, u). (4)

We use always p = ∞. If the distributions pout and pin

have joint support, the maximum in (4) could be ob-
tained at a point in the support of the true distribution.

However, if pout is a generic noise distribution like uni-
form noise or a smoothed version of it, then the num-
ber of cases where this happens has probability mass
close to zero under pout and thus does not negatively
influence in (3) the loss LCE on the true distribution.
The optimization of ACET in (3) can be done using an
adapted version of PGD [22] for adversarial training
where one performs projected gradient descent (poten-
tially for a few restarts) and uses the u realizing the
worst loss for computing the gradient. We present in
Figure 1 for MNIST a few noise images together with
their adversarial modification u(adversarial noise) gen-
erated by applying PGD to solve (4). One can observe
that the generated images have no structure resembling
images from the in-distribution.

5. Experiments

Noise is generated uniform at random or by permut-
ing training images plus a Gaussian filter with standard
deviation σ ∈ [1.0, 2.5] and contrast rescaling to use the
full range. Note that in contrast to other work [21, 19],
we do not use out-of-distribution data sets during train-
ing. For details see the appendix1.

Evaluation: We report for each model
(plain, CEDA, ACET) the test error and the
mean maximal confidence (for each point this is

maxk=1,...,K
efk(x)

∑K

l=1
efl(x)

). The attack for adversarial

noise uses 200 iterations (test time) versus 40 iterations
(training). We check the confidence on adversarial
samples computed for the test set of the in-distribution
dataset using 80 iterations of PGD with ǫ = 0.1 (except
MNIST with ǫ = 0.3). The evaluations on adversarial
noise and samples are novel. The adversarial noise
is interesting as it actively searches for images which
still yield high confidence in a neighborhood of a noise
image. It potentially detects an over-adaptation to
the noise model used during training in particular
in CEDA. The evaluation on adversarial samples is
interesting as one can hope that the reduction of the
confidence for out-of-distribution images also reduces
the confidence of adversarial samples as typically
adversarial samples are off the data manifold [30] and
thus are also out-of-distribution samples. Our models
have never seen adversarial samples during training,
they only have been trained using adversarial noise.

Results: ACET improves in almost all cases com-
pared to plain and CEDA the confidence on out-of-
distribution images. It is the only method producing
low confidence on adversarial noise and even reduces
the confidence of adversarial samples.

1The code is available at https://github.com/max-andr/

relu_networks_overconfident
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Noise
Samples
MNIST

Adversarial
Noise

MNIST
for Plain

Figure 1: Top row: uniform noise resp. permuted MNIST plus Gaussian filter and contrast rescaling. Bottom row: for each noise image the
corresponding adversarial noise image is generated (second part of the loss in ACET) for the plain model.

Trained on
MNIST

Plain (TE: 0.51%) CEDA (TE: 0.74%) ACET (TE: 0.66%)
MMC AUROC FPR@95 MMC AUROC FPR@95 MMC AUROC FPR@95

MNIST 0.991 – – 0.987 – – 0.986 – –

FMNIST 0.654 0.972 0.121 0.373 0.994 0.027 0.239 0.998 0.003

EMNIST 0.821 0.883 0.374 0.787 0.895 0.358 0.752 0.912 0.313

grayCIFAR-10 0.492 0.996 0.003 0.105 1.000 0.000 0.101 1.000 0.000

Noise 0.463 0.998 0.000 0.100 1.000 0.000 0.100 1.000 0.000

Adv. Noise 1.000 0.031 1.000 0.102 0.998 0.002 0.162 0.992 0.042

Adv. Samples 0.999 0.358 0.992 0.987 0.549 0.953 0.854 0.692 0.782

Trained on
SVHN

Plain (TE: 3.53%) CEDA (TE: 3.50%) ACET (TE: 3.52%)
MMC AUROC FPR@95 MMC AUROC FPR@95 MMC AUROC FPR@95

SVHN 0.980 – – 0.977 – – 0.978 – –

CIFAR-10 0.732 0.938 0.348 0.551 0.960 0.209 0.435 0.973 0.140

CIFAR-100 0.730 0.935 0.350 0.527 0.959 0.205 0.414 0.971 0.139

LSUN CR 0.722 0.945 0.324 0.364 0.984 0.084 0.148 0.997 0.012

Imagenet- 0.725 0.939 0.340 0.574 0.955 0.232 0.368 0.977 0.113

Noise 0.720 0.943 0.325 0.100 1.000 0.000 0.100 1.000 0.000

Adv. Noise 1.000 0.004 1.000 0.946 0.062 0.940 0.101 1.000 0.000

Adv. Samples 1.000 0.004 1.000 0.995 0.009 0.994 0.369 0.778 0.279

Trained on
CIFAR-10

Plain (TE: 8.87%) CEDA (TE: 8.87%) ACET (TE: 8.44%)
MMC AUROC FPR@95 MMC AUROC FPR@95 MMC AUROC FPR@95

CIFAR-10 0.949 – – 0.946 – – 0.948 – –

SVHN 0.800 0.850 0.783 0.327 0.978 0.146 0.263 0.981 0.118

CIFAR-100 0.764 0.856 0.715 0.761 0.850 0.720 0.764 0.852 0.711

LSUN CR 0.738 0.872 0.667 0.735 0.864 0.680 0.745 0.858 0.677

Imagenet- 0.757 0.858 0.698 0.749 0.853 0.704 0.744 0.859 0.678

Noise 0.825 0.827 0.818 0.100 1.000 0.000 0.100 1.000 0.000

Adv. Noise 1.000 0.035 1.000 0.985 0.032 0.983 0.112 0.999 0.008

Adv. Samples 1.000 0.034 1.000 1.000 0.014 1.000 0.633 0.512 0.590

Trained on
CIFAR-100

Plain (TE: 31.97%) CEDA (TE: 32.74%) ACET (TE: 32.24%)
MMC AUROC FPR@95 MMC AUROC FPR@95 MMC AUROC FPR@95

CIFAR-100 0.751 – – 0.734 – – 0.728 – –

SVHN 0.570 0.710 0.865 0.290 0.874 0.410 0.234 0.912 0.345

CIFAR-10 0.560 0.718 0.856 0.547 0.711 0.855 0.530 0.720 0.860

LSUN CR 0.592 0.690 0.887 0.581 0.678 0.887 0.554 0.698 0.881

Imagenet- 0.531 0.744 0.827 0.504 0.749 0.808 0.492 0.752 0.819

Noise 0.614 0.672 0.928 0.010 1.000 0.000 0.010 1.000 0.000

Adv. Noise 1.000 0.000 1.000 0.985 0.015 0.985 0.013 0.998 0.003

Adv. Samples 0.999 0.010 1.000 0.999 0.012 1.000 0.863 0.267 0.975

Table 1: Results for: Plain, CEDA and ACET. We report test error of all models and show the mean maximum confidence (MMC) on the
in- and out-distribution samples (lower is better for out-distribution samples), the AUC of the ROC curve (AUROC) for the discrimination
between in- and out-distribution based on confidence value (higher is better), and the FPR at 95% true positive rate (lower is better).
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Appendix

A. Proofs

However, before we come to the main result, we first
present a technical lemma needed in the proof, which
uses that all linear regions are polytopes and thus con-
vex sets.

Lemma 3.1. Let {Qi}
R
l=1 be the set of linear regions

associated to the ReLU-classifier f : R
d → R

K . For
any x ∈ R

d there exists α ∈ R with α > 0 and t ∈
{1, . . . , R} such that βx ∈ Qt for all β ≥ α.

Proof. Suppose the statement would be false. Then
there exist {βi}

∞
i=1 with βi ≥ 0, βi ≥ βj if i ≤ j and

βi → ∞ as i → ∞ such that for γ ∈ [βi, βi+1) we have
γx ∈ Qri with ri ∈ {1, . . . , R} and ri−1 6= ri 6= ri+1.
As there are only finitely many regions there exist
i, j ∈ N with i < j such that ri = rj , in partic-
ular βix ∈ Qri

and βjx ∈ Qri
. However, as the

linear regions are convex sets also the line segment
[βix, βjx] ∈ Qri . However, that implies βi = βj as
neighboring segments are in different regions which
contradicts the assumption. Thus there can only be
finitely many {βi}

M
i=1 and the {ri}

M
i=1 have to be all

different, which finishes the proof.

Theorem 3.1. Let Rd = ∪R
l=1Ql and f(x) = V lx + al

be the piecewise affine representation of the output of a
ReLU network on Ql. Suppose that V l does not contain
identical rows for all l = 1, . . . , R, then for almost any
x ∈ R

d and ǫ > 0 there exists an α > 0 and a class
k ∈ {1, . . . , K} such that for z = αx it holds

efk(z)

∑K
r=1 efr(z)

≥ 1 − ǫ.

Moreover, lim
α→∞

efk(αx)
∑K

r=1
efr(αx)

= 1.

Proof. By Lemma 3.1 there exists a region Qt with
t ∈ {1, . . . , R} and β > 0 such that for all α ≥ β we
have αx ∈ Qt. Let f(z) = V tz+at be the affine form of
the ReLU classifier f on Qt. Let k∗ = arg max

k

〈vt
k, x〉,

where vt
k is the k-th row of V t. As V t does not contain

identical rows, that is vt
l 6= vt

m for l 6= m, the maximum
is uniquely attained up to a set of measure zero. If the
maximum is unique, it holds for sufficiently large α ≥ β

〈

vt
l − vt

k∗ , αx
〉

+ at
l − at

k∗ < 0, ∀l ∈ {1, . . . , K}\{k∗}.

(5)

Thus αx ∈ Qt is classified as k∗. Moreover,

efk∗ (αx)

∑K
l=1 efl(αx)

=
e〈vt

k∗ ,αx〉+at
k

∑K
l=1 e〈vt

l
,αx〉+at

l

(6)

=
1

1 +
∑K

l 6=k∗ e〈vt
l
−vt

k∗
,αx〉+at

l
−at

k

. (7)

By inequality (5) all the terms in the exponential are
negative and thus by upscaling α, using 〈vt

k∗ , x〉 >

〈vt
l , x〉 for all l 6= k∗, we can get the exponential term

arbitrarily close to 0. In particular,

lim
α→∞

1

1 +
∑K

l 6=k e〈vt
l
−vt

k∗
,αx〉+at

l
−at

k

= 1.

Theorem 3.2. Let fk(x) =
∑N

l=1 αkle
−γ‖x−xl‖2

2 , k =
1, . . . , K be an RBF-network trained with cross-entropy
loss on the training data (xi, yi)

N
i=1. We define rmin =

min
l=1,...,N

‖x − xl‖2 and α = max
r,k

∑N
l=1 |αrl − αkl|. If

ǫ > 0 and

r2
min ≥

1

γ
log

( α

log(1 + Kǫ)

)

,

then for all k = 1, . . . , K,

1

K
− ǫ ≤

efk(x)

∑K
r=1 efr(x)

≤
1

K
+ ǫ.

Proof. It holds efk(x)
∑K

r=1
efr(x)

= 1
∑K

r=1
efr(x)−fk(x)

. With

|fr(x) − fk(x)| =
∣

∣

∑

l

(αrl − αkl)e
−γ‖x−xl‖2

2

∣

∣ (8)

≤ e−γr2
min

∑

l

|αrl − αkl| (9)

≤ e−γr2
minα ≤ log(1 + Kǫ), (10)

where the last inequality follows by the condition on
rmin. We get

1
∑K

r=1 efr(x)−fk(x)
≥

1
∑K

r=1 e|fr(x)−fk(x)|
(11)

≥
1

Keαe
−γr2

min

(12)

≥
1

K

1

1 + Kǫ
≥

1

K
− ǫ, (13)

where we have used in the third inequality the condi-
tion on r2

min and in the last step we use 1 ≥ (1−Kǫ)(1+
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Kǫ) = 1 − K2ǫ2. Similarly, we get

1
∑K

r=1 efr(x)−fk(x)
≤

1
∑K

r=1 e−|fr(x)−fk(x)|

≤
1

Ke−αe
−γr2

min

≤
1

K
(1 + Kǫ) ≤

1

K
+ ǫ.

This finishes the proof.

B. Additional α-scaling experiments

We also do a similar α-scaling experiment, but
with the projection to the image domain ([0, 1]d box),
and report the percentage of overconfident predictions
(higher than 95% confidence) in Table 2, second row.
We observe that such a technique can lead to over-
confident predictions even in the image domain for the
plain models. At the same time, on all datasets, the
ACET models have a significantly smaller fraction of
overconfident examples compared to the plain models.

C. The effect of Adversarial Confidence

Enhanced Training

In this section we compare predictions of the plain
model trained on MNIST (Figure 2) and the model
trained with ACET (Figure 3). We analyze the im-
ages that receive the lowest maximum confidence on
the original dataset (MNIST), and the highest max-
imum confidence on the two datasets that were used
for evaluation (EMNIST, grayCIFAR-10).

Evaluated on MNIST: We observe that for both
models the lowest maximum confidence corresponds to
hard input images that are either discontinous, rotated
or simply ambiguous.

Evaluated on EMNIST: Note that some hand-
written letters from EMNIST, e.g. ’o’ and ’i’ may look
exactly the same as digits ’0’ and ’1’. Therefore, one
should not expect that an ideal model assigns uniform
confidences to all EMNIST images. For Figure 2 and
Figure 3 we consider predictions on letters that in gen-
eral do not look exactly like digits (’a’, ’b’, ’c’, ’d’).
We observe that the images with the highest maximum
confidence correspond to the handwritten letters that
resemble digits, so the predictions of both models are
justified.

Evaluated on Grayscale CIFAR-10: This
dataset consists of the images that are clearly distinct
from digits. Thus, one can expect uniform confidences
on such images, which is achieved by the ACET model
(Table 1), but not with the plain model. The mean
maximum confidence of the ACET model is close to

10%, with several individual images that are scored
with up to 40.41% confidence. Note, that this is much
better than for the plain model, which assigns up to
99.60% confidence for the images that have nothing
to do with digits. This result is particularly interest-
ing, since the ACET model has not been trained on
grayCIFAR-10 examples, and yet it shows much better
confidence calibration for out-of-distribution samples.

D. Explicit Derivation of the piecewise

affine function of ReLU networks

In the following we follow [7]. For simplicity we
just present fully connected layers (note that convolu-
tional layers are a particular case of them). Denote
by σ : R → R, σ(t) = max{0, t}, the ReLU acti-
vation function, by L + 1 the number of layers and
W (l) ∈ R

nl×nl−1 and b(l) ∈ R
nl respectively are the

weights and offset vectors of layer l, for l = 1, . . . , L+1
and n0 = d. For x ∈ R

d one defines g(0)(x) = x. Then
one can recursively define the pre- and post-activation
output of every layer as

f (k)(x) = W (k)g(k−1)(x) + b(k), and

g(k)(x) = σ(f (k)(x)), k = 1, . . . , L,

so that the resulting classifier is obtained as
f (L+1)(x) = W (L+1)g(L)(x) + b(L+1).

Let ∆(l), Σ(l) ∈ R
nl×nl for l = 1, . . . , L be diagonal

matrices defined elementwise as

∆(l)(x)ij =

{

sign(f
(l)
i (x)) if i = j,

0 else.
,

Σ(l)(x)ij =

{

1 if i = j and f
(l)
i (x) > 0,

0 else.
.

Note that for leaky ReLU the entries would be 1 and
α instead. This allows to write f (k)(x) as composition
of affine functions, that is

f (k)(x) =W (k)Σ(k−1)(x)
(

W (k−1)Σ(k−2)(x)

×
(

. . .
(

W (1)x + b(1)
)

. . .
)

+ b(k−1)
)

+ b(k),

We can further simplify the previous expression as
f (k)(x) = V (k)x + a(k), with V (k) ∈ R

nk×d and a(k) ∈

7 64



Plain model:
lowest max

confidence on
MNIST

Plain model:
highest max

confidence on
EMNIST

Plain model:
highest max

confidence on
grayCIFAR-10

1 with 37.58% 1 with 39.72% 7 with 40.49% 7 with 40.54% 5 with 43.31% 9 with 45.73% 1 with 47.86%

0 with 100.0% 0 with 100.0% 6 with 100.0% 6 with 100.0% 0 with 100.0% 0 with 100.0% 0 with 100.0%

2 with 99.60% 2 with 99.13% 7 with 98.99% 6 with 98.83% 2 with 98.76% 7 with 98.65% 6 with 98.48%

Figure 2: Top Row: predictions of the plain MNIST model with the lowest maximum confidence. Middle Row: predictions of the plain
MNIST model on letters ’a’, ’b’, ’c’, ’d’ of EMNIST with the highest maximum confidence. Bottom Row: predictions of the plain MNIST
model on the grayscale version of CIFAR-10 with the highest maximum confidence. Note that although the predictions on EMNIST are mostly
justified, the predictions on CIFAR-10 are overconfident on the images that have no resemblance to digits.

ACET model:
lowest

maximum
confidence on

MNIST

ACET model:
highest

maximum
confidence on

EMNIST

ACET model:
highest

maximum
confidence on
grayCIFAR-10

1 with 26.80% 1 with 35.73% 3 with 36.21% 7 with 36.83% 3 with 38.00% 3 with 38.91% 2 with 39.86%

2 with 100.0% 6 with 100.0% 2 with 99.99% 6 with 99.99% 6 with 99.99% 6 with 99.99% 0 with 99.99%

0 with 40.41% 4 with 38.24% 0 with 36.13% 0 with 34.91% 0 with 34.37% 0 with 33.58% 7 with 32.36%

Figure 3: Top Row: predictions of the ACET MNIST model with the lowest maximum confidence. Middle Row: predictions of the ACET
MNIST model on letters ’a’, ’b’, ’c’, ’d’ of EMNIST with the highest maximum confidence. Bottom Row: predictions of the ACET MNIST
model on the grayscale version of CIFAR-10 with the highest maximum confidence. Note that for the ACET model the predictions on both
EMNIST and grayCIFAR-10 are now justified.

R
nk given by

V (k) = W (k)
(

k−1
∏

l=1

Σ(k−l)(x)W (k−l)
)

and

a(k) = b(k) +

k−1
∑

l=1

(

k−l
∏

m=1

W (k+1−m)Σ(k−m)(x)
)

b(l).

The polytope Q(x), the linear region containing x, can

be characterized as an intersection of N =
∑L

l=1 nl half
spaces given by

Γl,i =
{

z ∈ R
d

∣

∣

∣
∆(l)(x)

(

V
(l)

i z + a
(l)
i

)

≥ 0
}

,
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for l = 1, . . . , L, i = 1, . . . , nl, namely

Q(x) =
⋂

l=1,...,L

⋂

i=1,...,nl

Γl,i.

Note that N is also the number of hidden units of the
network. Finally, we can write

f (L+1)(z)
∣

∣

∣

Q(x)
= V (L+1)z + a(L+1),

which is the affine restriction of f to Q(x).

E. RBF-Networks know when they don’t

know

While the result for ReLU network seems not to
be known, the following result is at least qualitatively
known [10] but we could not find a reference for it. In
contrast to the ReLU networks it turns out that Radial
Basis Function (RBF) networks have the property to
produce approximately uniform confidence predictions
far away from the training data. Thus there exist clas-
sifiers which satisfy the minimal requirement which we
formulated in Section 1. In the following theorem we
explicitly quantify what “far away” means in terms of
parameters of the RBF classifier and the training data.

Theorem E.1. Let fk(x) =
∑N

l=1 αkle
−γ‖x−xl‖2

2 , k =
1, . . . , K be an RBF-network trained with cross-entropy
loss on the training data (xi, yi)

N
i=1. We define rmin =

min
l=1,...,N

‖x − xl‖2 and α = max
r,k

∑N
l=1 |αrl − αkl|. If

ǫ > 0 and

r2
min ≥

1

γ
log

( α

log(1 + Kǫ)

)

,

then for all k = 1, . . . , K,

1

K
− ǫ ≤

efk(x)

∑K
r=1 efr(x)

≤
1

K
+ ǫ.

We think that it is a very important open problem
to realize a similar result as in Theorem E.1 for a class
of neural networks.

F. Experiments

In the evaluation, we follow [14, 21, 19] by train-
ing on one dataset and evaluating the confidence on
other out of distribution datasets and noise images. In
contrast to [21, 19] we neither use a different parame-
ter set for each test dataset [21] nor do we use one of
the test datasets during training [19]. More precisely,
we train on MNIST, SVHN, CIFAR-10 and CIFAR-
100, where we use the LeNet architecture on MNIST

taken from [22] and a ResNet architecture [12] for the
other datasets. We also use standard data augmenta-
tion which includes random crops for all datasets and
random mirroring for CIFAR-10 and CIFAR-100. For
the generation of out-of-distribution images from pout

we proceed as follows: half of the images are gener-
ated by randomly permuting pixels of images from the
training set and half of the images are generated uni-
formly at random. Then we apply to these images a
Gaussian filter with standard deviation σ ∈ [1.0, 2.5] as
lowpass filter to have more low-frequency structure in
the noise. As the Gaussian filter leads to a contrast re-
duction we apply afterwards a global rescaling so that
the maximal range of the image is again in [0, 1].
Training: We train each model normally (plain),
with confidence enhancing data augmentation (CEDA)
and with adversarial confidence enhancing training
(ACET). It is well known that weight decay alone re-
duces overconfident predictions. Thus we use weight
decay with regularization parameter 5 · 10−4 for all
models leading to a strong baseline (plain). For both
CEDA (1) and ACET (3) we use λ = 1, that means
50% of the samples in each batch are from the orig-
inal training set and 50% are noise samples as de-
scribed before. For ACET we use p = ∞ and ǫ =
0.3 and optimize with PGD [22] using 40 iterations
and stepsize 0.0075 for all datasets. All models are
trained for 100 epochs with ADAM [16] on MNIST
and SGD+momentum for SVHN/CIFAR-10/CIFAR-
100. The initial learning rate is 10−3 for MNIST and
0.1 for SVHN/CIFAR-10 and it is reduced by a fac-
tor of 10 at the 50th, 75th and 90th of the in total
100 epochs. The code is available at https://github.

com/max-andr/relu_networks_overconfident.
Evaluation: We report for each model (plain, CEDA,
ACET) the test error and the mean maximal confi-

dence (for each point this is maxk=1,...,K
efk(x)

∑K

l=1
efl(x)

),

denoted as MMC, on the test set. In order to eval-
uate how well we reduce the confidence on the out-
distribution, we use four datasets on CIFAR-10 [17]
and SVHN [27] (namely among CIFAR-10, CIFAR-
100, SVHN, ImageNet-, which is a subset of ImageNet
where we removed classes similar to CIFAR-10, and
the classroom subset of LSUN [35] we use the ones on
which we have not trained) and for MNIST we evalu-
ate on EMNIST [6], a grayscale version of CIFAR-10
and Fashion MNIST [34]. Additionally, we show the
evaluations on noise, adversarial noise and adversarial
samples. The noise is generated in the same way as the
noise we use for training. For adversarial noise, where
we maximize the maximal confidence over all classes
(see Lpout

(f, z) in (2)), we use PGD with 200 iterations
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Plain ACET
MNIST SVHN CIFAR-10 CIFAR-100 MNIST SVHN CIFAR-10 CIFAR-100

Median α 1.5 28.1 8.1 9.9 3.0 · 1015 49.8 45.3 9.9

% overconfident 98.7% 99.9% 99.9% 99.8% 0.0% 50.2% 3.4% 0.0%

Table 2: First row: We evaluate all trained models on uniform random inputs scaled by a constant α ≥ 1 (note that the resulting inputs

will not constitute valid images anymore, since in most cases they exceed the [0, 1]d box). We find the minimum α such that the models
output 99.9% confidence on them, and report the median over 10 000 trials. As predicted by Theorem 3.1 we observe that it is always possible
to obtain overconfident predictions just by scaling inputs by some constant α, and for plain models this constant is smaller than for ACET.
Second row: we show the percentage of overconfident predictions (higher than 95% confidence) when projecting back the α-rescaled uniform

noise images back to [0, 1]d. One observes that there are much less overconfident predictions for ACET compared to standard training.

Plain CEDA ACET

Figure 4: Histogram of confidence values (logarithmic scale) of adversarial samples based on MNIST test points. ACET is the only model
where a significant fraction of adversarial samples have very low confidence. Note, however that the ACET model has not been trained on
adversarial samples of MNIST, but only on adversarial noise.

and stepsize 0.0075 in the ǫ ball wrt the ‖·‖∞-norm
with ǫ = 0.3 (same as in training). Note that for train-
ing we use only 40 iterations, so that the attack at test
time is significantly stronger. Finally, we check also
the confidence on adversarial samples computed for the
test set of the in-distribution dataset using 80 itera-
tions of PGD with ǫ = 0.3, stepsize 0.0075 for MNIST
and ǫ = 0.1, stepsize 0.0025 for the other datasets.
The latter two evaluation modalities are novel com-
pared to [14, 21, 19]. The adversarial noise is interest-
ing as it actively searches for images which still yield
high confidence in a neighborhood of a noise image and
thus is a much more challenging than the pure eval-
uation on noise. Moreover, it potentially detects an
over-adaptation to the noise model used during train-
ing in particular in CEDA. The evaluation on adver-
sarial samples is interesting as one can hope that the
reduction of the confidence for out-of-distribution im-
ages also reduces the confidence of adversarial samples
as typically adversarial samples are off the data mani-
fold [30] and thus are also out-of-distribution samples
(even though their distance to the true distribution
is small). Note that our models have never seen ad-
versarial samples during training, they only have been
trained using the adversarial noise. Nevertheless our
ACET model can reduce the confidence on adversarial
samples. As evaluation criteria we use the mean maxi-

mal confidence, the area under the ROC curve (AUC)
where we use the confidence as a threshold for the de-
tection problem (in-distribution vs. out-distribution).
Moreover, we report in the same setting the false pos-
itive rate (FPR) when the true positive rate (TPR) is
fixed to 95%. All results can be found in Table 1.

Main Results: In Table 1, we show the results
of plain (normal training), CEDA and ACET. First of
all, we observe that there is almost no difference be-
tween the test errors of all three methods. Thus im-
proving the confidence far away from the training data
does not impair the generalization performance. We
also see that the plain models always produce relatively
high confidence predictions on noise images and com-
pletely fail on adversarial noise. CEDA produces low
confidence on noise images but mostly fails (except for
MNIST) on adversarial noise which was to be expected
as similar findings have been made for the creation of
adversarial samples. Only ACET consistently produces
low confidence predictions on adversarial noise and
has high AUROC. For the out-of-distribution datasets,
CEDA and ACET improve most of the time the maxi-
mal confidence and the AUROC, sometimes with very
strong improvements like on MNIST evaluated on FM-
NIST or SVHN evaluated on LSUN. However, one ob-
serves that it is more difficult to reduce the confidence
for related tasks e.g. MNIST evaluated on EMNIST or
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CIFAR-10 evaluated on LSUN, where the image struc-
ture is more similar.
Finally, an interesting outcome is that ACET reduces
the confidence on adversarial examples, see Figure 4 for
an illustration for MNIST, and achieves on all datasets
improved AUROC values so that one can detect more
adversarial examples via thresholding the confidence
compared to the plain and CEDA models. The im-
proved performance of ACET is to some extent unex-
pected as we just bias the model towards uniform con-
fidence over all classes far away from the training data,
but adversarial examples are still close to the original
images. In summary, ACET does improve confidence
estimates significantly compared to the plain model but
also compared to CEDA, in particular on adversarial
noise and adversarial examples. ACET has also a ben-
eficial effect on adversarial examples which is an in-
teresting side effect and shows in our opinion that the
models have become more reliable.

Far away high confidence predictions: Theo-
rem 3.1 states that ReLU networks always attain high
confidence predictions far away from the training data.
The two network architectures used in this paper are
ReLU networks. It is thus interesting to investigate
if the confidence-enhanced training, ACET, makes it
harder to reach high confidence than for the plain
model. We do the following experiment: we take uni-
form random noise images x and then search for the
smallest α such that the classifier attains 99.9% con-
fidence on αx. This is exactly the construction from
Theorem 3.1 and the result can be found in Table 2.
We observe that indeed the required upscaling factor
α is significantly higher for ACET than for the plain
models which implies that our method also influences
the network far away from the training data. This also
shows that even training methods explicitly aiming at
counteracting the phenomenon of high confidence pre-
dictions far away from the training data, cannot pre-
vent this. We also provide similar experiments, but
with the projection to [0, 1]d in the appendix.

G. ROC curves

We show the ROC curves for the binary classifi-
cation task of separating True (in-distribution) im-
ages from False (out-distribution) images. These cor-
respond to the AUROC values (area under the ROC
curve) reported in Table 1 in the main paper. As stated
in the paper the separation of in-distribution from out-
distribution is done by thresholding the maximal con-
fidence value over all classes taken from the original
multi-class problem. Note that the ROC curve shows
on the vertical axis the True Positive Rate (TPR), and
the horizontal axis is the False Positive Rate (FPR).

Thus the FPR@95%TPR value can be directly read off
from the ROC curve as the FPR value achieved for 0.95
TPR. Note that a value of 1 of AUROC corresponds to
a perfect classifier. A value below 0.5 means that the
ordering is reversed: out-distribution images achieve
on average higher confidence than the in-distribution
images. The worst case is an AUROC of zero, in which
case all out-distribution images achieve a higher confi-
dence value than the in-distribution images.

G.1. ROC curves for the models trained on MNIST

In the ROC curves for the plain, CEDA and ACET
models for MNIST that are presented in Figure 5, the
different grades of improvements for the six evaluation
datasets can be observed. For noise, the curve of the
plain model is already quite close to the upper left cor-
ner (which means high AUROC), while for the mod-
els trained with CEDA and ACET, it actually reaches
that corner, which is the ideal case. For adversarial
noise, the plain model is worse than a random classi-
fier, which manifests itself in the fact that the ROC
curve runs below the diagonal. While CEDA is better,
ACET achieves a very good result here as well.

G.2. ROC curves for the models trained on SVHN

CEDA and ACET significantly outperform plain
training in all metrics. While CEDA and ACET per-
form similar on CIFAR-10, LSUN and noise, ACET
outperforms CEDA clearly on adversarial noise and ad-
versarial samples.

G.3. ROC curves for the models trained on
CIFAR­10

The ROC curves for CIFAR10 show that this
dataset is harder than MNIST or SVHN. However,
CEDA and ACET improve significantly on SVHN. For
LSUN even plain training is slightly better (only time
for all three datasets). However, on noise and adver-
sarial noise ACET outperforms all other methods.

G.4. ROC curves for the models trained on
CIFAR­100

Qualitatively, on CIFAR-100, we observe the same
results as for CIFAR-10. Note that the use of the confi-
dences to distinguish between in- and out-distribution
examples generally works worse here. This might be
attributed to the fact that CIFAR-100 has consider-
ably more classes, and a higher test error. Therefore,
the in- and out-distribution confidences are more likely
to overlap.
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Plain CEDA ACET

Figure 5: ROC curves of the MNIST models on the evaluation datasets.

Plain CEDA ACET

Figure 6: ROC curves of the SVHN models on the evaluation datasets.

H. Histograms of confidence values

As the AUROC or the FPR@95%TPR just tell us
how well the confidence values of in-distribution and
out-distribution are ordered, we also report the his-
tograms of achieved confidence values on the original
dataset (in-distribution) on which it was trained and
the different evaluation datasets. The histograms show
how many times the maximum confidence for test im-
ages have certain values between minimal possible 0.1
(0.01 for CIFAR-100) and maximal possible 1.0. They
give a more detailed picture than the single numbers
for mean maximum confidence, area under ROC and
FPR@95% TPR.

H.1. Histograms of confidence values for models
trained on MNIST

As visible in the top row of Figure 9, the confidence
values for clean MNIST test images don’t change sig-
nificantly for CEDA and ACET. For FMNIST, gray
CIFAR-10 and Noise inputs, the maximum confidences
of CEDA are generally shifted to lower values, and
those of ACET even more so. For EMNIST, the
same effect is observable, though much weaker due to
the similarity of characters and digits. For adversar-

ial noise, both CEDA and ACET are very success-
ful in lowering the confidences, with most predictions
around 10% confidence. As discussed in the main pa-
per, CEDA is not very beneficial for adversarial images,
while ACET slightly lowers its confidence to an average
value of 85.4% here.

H.2. Histograms of confidence values for models
trained on SVHN

Figure 10 shows that both CEDA and ACET as-
sign lower confidences to the out-of-distribution sam-
ples from SVHN house numbers and LSUN classroom
examples. CEDA and ACET, as expected, also signf-
icantly improve on noise samples. While a large frac-
tion of adversarial samples/noise still achieve high con-
fidence values, our ACET trained model is the only one
that lowers the confidences for adversarial noise and
adversarial samples significantly.

H.3. Histograms of confidence values for models
trained on CIFAR­10

In Figure 11, CEDA and ACET lower significantly
the confidence on noise, and ACET shows an improve-
ment for adversarial noise, which fools the plain and
CEDA models completely. For CIFAR-10, plain and
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Plain CEDA ACET

Figure 7: ROC curves of the CIFAR-10 models on the evaluation datasets.

Plain CEDA ACET

Figure 8: ROC curves of the CIFAR-100 models on the evaluation datasets.

CEDA models yield very high confidence values on ad-
versarial images, while for ACET model the confidence
is reduced. Additionally, on SVHN, we observe a shift
towards lower confidence for CEDA and ACET com-
pared to the plain model.

H.4. Histograms of confidence values for models
trained on CIFAR­100

In Figure 12, we see similar results to the other
datasets. It is noticable in the histograms that for
adversarial noise, the deployed attack either achieves
100% confidence or no improvement at all. For CEDA,
the attack succeeds in most cases, and for ACET only
rarely.
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Dataset Plain CEDA ACET

MNIST

FMNIST

EMNIST

Gray
CIFAR-10

Noise

Adversarial
Noise

Adversarial
Samples

Figure 9: Histograms (logarithmic scale) of maximum confidence values of the three compared models for MNIST on various evaluation
datasets.
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Dataset Plain CEDA ACET

SVHN

CIFAR-10

CIFAR-100

LSUN
Classroom

Imagenet
minus C10

Noise

Adversarial
Noise

Adversarial
Samples

Figure 10: Histograms (logarithmic scale) of maximum confidence values of the three compared models for SVHN on various evaluation
datasets.
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Dataset Plain CEDA ACET

CIFAR-10

SVHN

CIFAR-100

LSUN
Classroom

Imagenet
minus C10

Noise

Adversarial
Noise

Adversarial
Samples

Figure 11: Histograms (logarithmic scale) of maximum confidence values of the three compared models for CIFAR-10 on various evaluation
datasets.
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Dataset Plain CEDA ACET

CIFAR-100

SVHN

CIFAR-10

LSUN
Classroom

Imagenet
minus C10

Noise

Adversarial
Noise

Adversarial
Samples

Figure 12: Histograms (logarithmic scale) of maximum confidence values of the three compared models for CIFAR-100 on various evaluation
datasets.
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